

The Fermilab Program and the FY2004 Budget

Michael Witherell HEPAP Meeting March 7, 2003

The Fermilab Program

Area of Particle Physics

- Theoretical Physics, Phenomenology & Data Analysis
- Electroweak Physics
- **Lepton Flavor Physics**
- **Quark Flavor Physics**
- **Unification Scale Physics**
- Cosmology & Particle Physics SloanDSS, CDMS
- Particle-Astrophysics Auger

The breadth of the Fermilab program reflects the US HEP program.

Fermilab program

Particle and Astro Theory groups

Tevatron, LHC, LC

NuMI, MiniBooNE

BTeV, CKM

The Distribution of Effort

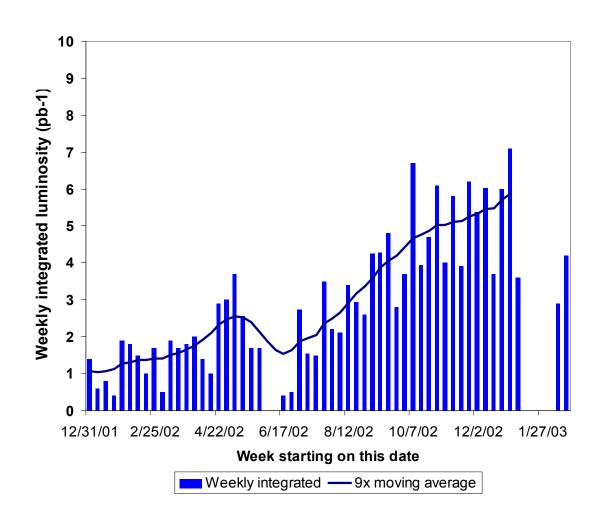
 The rough fraction of the laboratory research budget that supports the various programs:

Program	FY04	% of total
	Funds (\$M)	research
Tevatron Collider	136	70
Neutrino Program	22	11
LHC*	2+9	1+5
Accelerator R&D	9	5
Exp. Astrophysics*	3.5+1	2+1
BTeV	2	1
CKM	2	1
Fixed Target	3	1.5
Theory	4.5	2.5

^{*}First number is Fermilab base funding, second is from LHC project or outside sources.

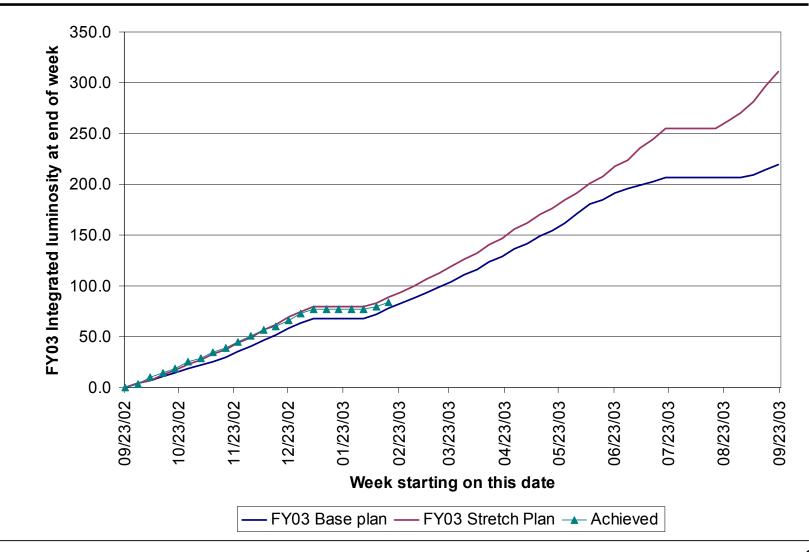
Programs and Facilities

Program	Physicists	Facilities
Tevatron Run I	l 1200	collider, detectors, computing
Neutrino	260	neutrino beams, large detectors
US-CMS	300	detector, computing, research
US-LHC		accelerator systems
Astro	450	detectors
		telescope, data processing
Quark Flavor	210	accelerator complex, detectors
Lattice QCD	60	commodity cluster computing facility


No programs have been approved for funding since NuMI in 1999. Since then we have been executing approved projects and moving into operations, and in the case of CDF and D0, starting an upgrade.

Weekly integrated luminosity

At end of CY 2002


- At start of year
- Best week = 7.1pb⁻¹
 - 1.4
- Typical week = 5-6pb⁻¹
 - 1.0
- Best initial luminosity = 3.6x10³¹cm⁻²s⁻¹
 - -1.0

The shutdown was designed to remove at least one bottleneck.

FY 2003 Plan

Run II Physics for Summer 2003

- Sample of ~200 pb⁻¹ with more powerful detectors, somewhat higher energy
- Top quark measurements
 - >3 x Run I sample
- Bottom, charm quark measurements
 - First round of results with B,B_s, Λ_b , charm samples
- Jet distributions at highest p_T
- Searches for exotic high-mass states

Run II Luminosity

The official luminosity goal for Run II was defined in the data sheet for the Main Injector Project:

- ñ ìThe Tevatron proton-antiproton colliding beam luminosity will be increased to at least 5x10³¹cm⁻²sec⁻¹.î
- We will obtain greater luminosity with a sustained program of experience and improvements, and by adding the Recycler.
- We are preparing an integrated plan for Run II upgrades to be submitted on 6/1/03.
 - 6-8x10³¹ without the Recycler
 - ~1x10³² with the Recycler as postaccumulator
 - 2-3x10³² with the Recycler and electron cooling

Collider Physics Goals

Run II Physics Program

 5σ Higgs signal @ m_H = 115 GeV 15 fb-1 3σ Higgs signal @ m_H = 115-135, 150-175 GeV Reach ultimate precision for top, W, B physics 3σ Higgs signal @ m_H = 115-125, 155-170 GeV Exclude Higgs over whole range of 115-180 GeV 10 fb-1 Possible discovery of supersymmetry in a larger fraction of parameter space 3σ Higgs signal @ m_H = 115 GeV Exclude SM Higgs 115-130, 155-170 GeV Exclude much of SUSY Higgs parameter space 5 fb⁻¹ Possible discovery of supersymmetry in a significant fraction of minimal SUSY parameter space (the source of cosmic dark matter?) Measure top mass ± 3 GeV and W mass ± 25 MeV Directly exclude m_H = 115 GeV 2 fb-1 Significant SUSY and SUSY Higgs searches Probe extra dimensions at the 2 TeV (10-19 m) scale B physics: constrain the CKM matrix Improved top mass measurement High p_T jets constrain proton structure 300 pb-1 Start to explore B_S mixing and B physics SUSY Higgs search @ large tan β Searches beyond Run I sensitivity Each gain in luminosity yields a significant increase

in reach and lays the foundation for the next steps

DOE Review: Long-range future

- i Reaching the base luminosity goal of 6.5 inverse femtobarns delivered by the end of the year 2008 will be a *significant challenge*. The committee found that a well thought out plan exists for luminosity improvement in FY 2003, but comparatively little detailed scheduling and resource planning beyond FY 2003."
 - "The laboratory's technical approach for increasing luminosity over the next six years is sound and well motivated and, if successfully implemented, will maximize the integrated luminosity over this time period."

Fermilab Response: Future

- We agree.
 - Reaching the base goal for integrated luminosity by FY 2008 presents a significant challenge.
 - Detailed schedule and resource plan beyond FY 2003 would be presented this summer.
- Luminosity delivered per detector by the end of FY 2008(FY 2010):

Base goal: 6.5(10)fb⁻¹

Stretch goal: 11 (17)fb⁻¹

- We will run CDF and DØ until the LHC experiments start to produce physics results that dominate our picture.
 - We expect to be running to FY 2009-10.
 - Outcome depends on available funding.

Run IIb Detector Upgrades

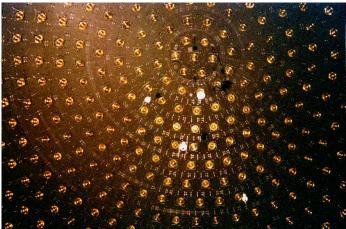
- In June, PAC recommended laboratory approval to CDF and D0 upgrade projects that would
 - replace radiation-damaged silicon detectors with new detectors of simpler design with more radiation-hard technology.
 - upgrade data acquisition and triggers to deal with higher luminosity.
- We held successful Lehman baseline reviews in September.
 - No action items, recommended reduced contingency, which we accepted
- External Independent Review completed in Nov. 2002
- ESAAB approval on December 17, 2002
- Sensor and SVX4 orders going out

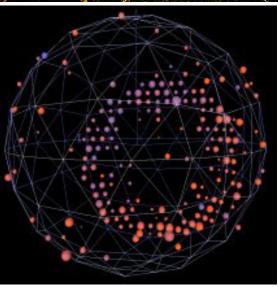
Run II Accelerator Plan: next steps

 We are working on a detailed plan with resourceloaded schedule for the full scope of accelerator upgrades.

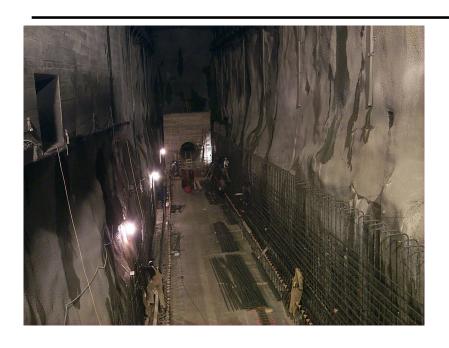
Acc	 Accelerator Advisory Committee 				2/4-6
Б.			/B 4 T:		

Director's review (M. Tigner, chair)5/5-7

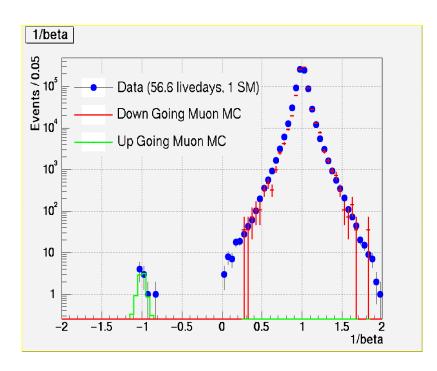

Plan with schedule submitted6/1

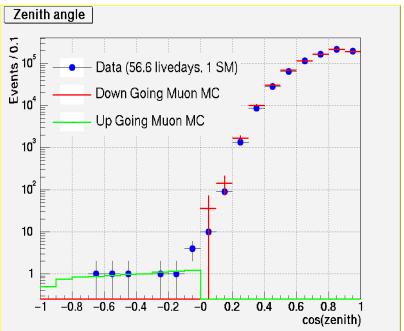

DOE reviewby 8/1

MiniBooNE is running.


- First event September 2002
- Neutrino Beam operates 140 hrs per week
- Events match Monte Carlo
- News from February, 2003: record beam intensities
 - 4.5x10¹⁶ p/hr standalone
 - 3.6x10¹⁶ p/hr when also stacking antiprotons
 - Improvement ~1.7
- Currently at ~4 x 10¹⁸ pot per week
- Increases in intensity while under strict limits on booster losses
 - MP02 Magnet installed Jan. shutdown
 - shorter extraction notch
 - improved booster orbit
 - Collimator shielding designed, under construction, to be installed this summer.

NuMI


Target Hall looking downstream


MINOS Hall looking upstream

- Surface Buildings and Outfitting construction started 11/1/02
- >416/484 planes of MINOS far detector installed, almost all online
- Cosmic ray studies underway
- Heading toward neutrino beam in early 2005.

MINOS: Upward-going Muons

Accelerator Improvements to Support Run II Goals

Accelerator White Paper 12/18/02

- The base goal represents what could be expected if the majority of accelerator improvements envisioned perform as planned, while
- the stretch goal indicates what could be expected if essentially everything that is envisioned is successful.
- The long-term plan includes the strategy for addressing the major risk factors in achieving the long-term stretch scenario, which fall into four major categories:
 - Operational reliability
 - Technical success in major R&D initiatives
 - Proton economics
 - Resources (people and funding)

Accelerator Improvements to Support Run II Goals

Funding needed to follow the plan:

FY2003	FY2004	FY2005	FY2006	
\$286 M	\$309 M	\$321 M	\$334 M	

- The figures for FY 2004 and beyond are consistent with Fermilab's FY 2002 budget, corrected for 4% inflation.
- After the massive redirection of effort within the laboratory to support the Run II effort on this year's budget, there is much less potential to move additional resources from the rest of the laboratory next year.
 - CDF and D0 and the NuMI project are the largest components of the research program outside accelerator operations and upgrades.

Review Report: Resources

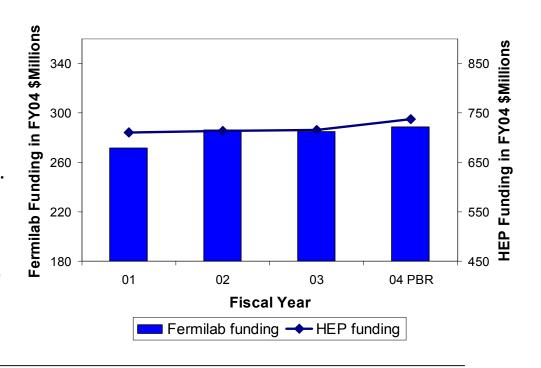
 "The overall funding level for the nation's high energy physics program and for Fermilab in FY 2004 and beyond is a major concern, one that could severely impact Fermilab's ability to deliver on the luminosity goal for the Tevatron complex."

Fermilab Response: Resources

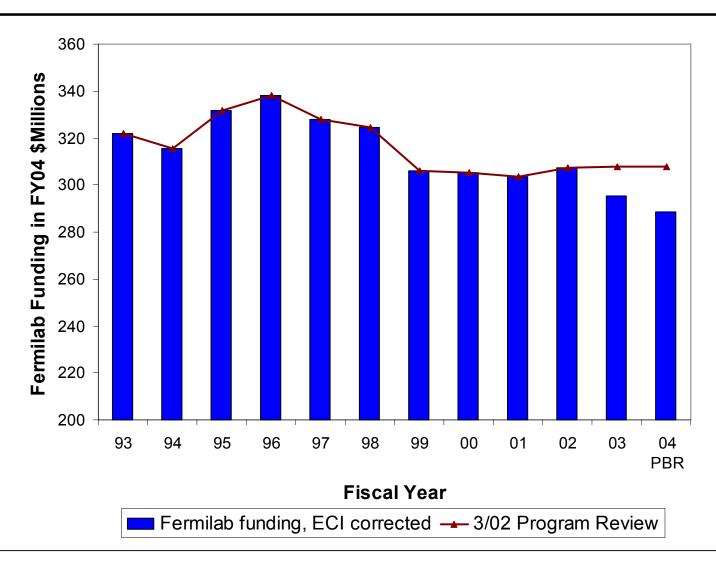
- The funding level will determine the prospects.
 - The expectations for integrated luminosity in Run II are inextricably connected to the funding profile for the laboratory.

First: The FY 2003 Budget

- The budget presented for FY2003 at our Annual Program Review in March, 2002 was \$298.3 M.
- Until February, 2003, we were working with a budget guidance of \$286.4 M, requiring \$11.9 M in cuts.
 - This led to the set of measures discussed at the 11/02 HEPAP meeting.
- The actual FY03 budget is \$284.9 M, an additional \$1.5 M lower.
 - This is a \$1.6 M increase in base budget, \$5.1 M cut in total budget, from FY2002.
 - The employment inflation increase of 4% is about \$13 M, and the FY03 budget is \$1M below FY02. We therefore have to reduce effort by about \$14 M this year.

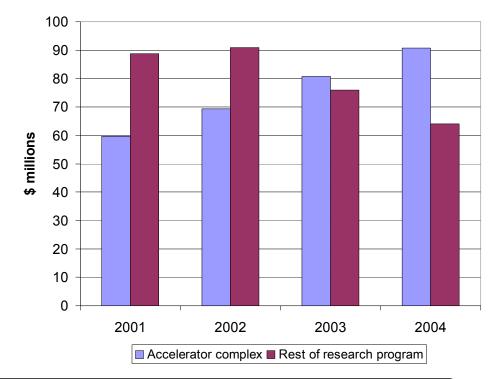

FY04 budget request is bad for HEP, worse for Fermilab.

FY	02	03	04	02-04
HEP	713.2	715.7	738.0	3.5%
Fermilab base	286.2	284.8	288.5	0.8%
Fermilab total	310.6	311.6	303.3	-2.4%

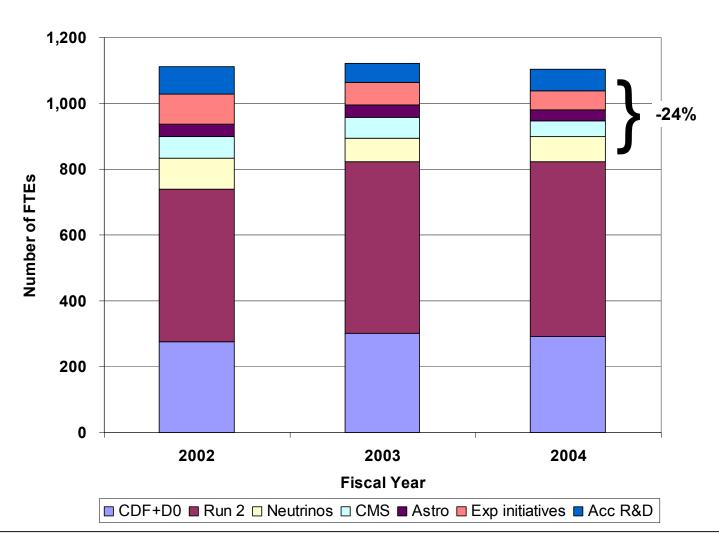

Fermilab budget is \$288.5M. This is down 7% relative to inflation since FY2002.

- These are the critical years for collider upgrade.
- General reduction will take it down further.
- The proposal for ambitious upgrading of the Tevatron has not yet been funded.

Fermilab funding, inflation corrected



Accelerator effort grows within a flat Fermilab budget for 3rd year.


- Fermilab total loses
 ~6% to inflation.
- Accelerator effort +40% in constant dollars
- Rest of research program -40% in constant dollars
 - neutrino and other experiments
 - accelerator R&D
 - experimental astro
 - theory

	2001	2002	2003	2004	01-04
Accelerator complex	59.6	69.4	80.8	90.8	52%
CDF+D0	39.3	39.5	41.8	45.8	17%
Support	86.2	86.3	86.4	87.8	2%
Rest of research program	88.8	91.0	75.9	64.1	-28%
Fermilab total	273.9	286.2	284.9	288.5	5%

FTEs in Research Areas

Incremental Analysis

Incremental Analysis FY2003 to FY2004

•		FY2004	
		Budget	
	FY2003	Request	Change
Total Salary, Wage and Fringe	178.7	182.6	3.9
Items Below are M&S			
Accelerator Ops and Maintenance	13.3	14.0	0.7
Run II Accelerator Improvements	6.2	11.1	4.9
CDF/D0 Ops and Computing	8.2	8.7	0.5
Run II b Detector Upgrades	7.0	9.5	2.5
NuMI / MINOS	22.2	13.5	(8.8)
MiniBooNE	0.48	0.54	0.1
LHC	11.8	4.8	(7.0)
Future Accelerator R&D	3.5	2.9	(0.5)
Experimental Initiatives	1.8	1.3	(0.5)
Experimental Particle Astrophy.	3.1	1.5	(1.6)
Electrical Power	17.4	18.5	1.1
GPP + UIP	7.5	8.3	8.0
Other M&S	28.9	26.2	(2.7)
M&S Total	131.3	120.7	(10.6)
Total Budget	310.1	303.3	(6.7)
Funding from Other Sources	25.2	14.8	(10.4)
Base Budget	284.8	288.5	3.7

Impacts of FY03-04 Budgets

- We continue making an extraordinary shift of resources within the laboratory to support the Tevatron collider program.
- We are maintaining schedule and funding profile on certain select projects
 - NuMI
 - US-LHC, and US-CMS
 - Linear Collider R&D (at a small funding level)
- We are reducing support in other areas to the level below what is needed for reasonable progress.
 - This affects the long-term health of US HEP.

Impacts of FY 2003-04 budgets

- HEP did badly, Fermilab did even worse.
- The achievable outcome of Run II depends on the budget level.
- A small increase in budget gains a lot more science;
 a small decrease leads to much less.

Summary

- The Tevatron collider program is back.
 - Look for the results coming later this month, but especially at Lepton-Photon this summer.
- The Neutrino program is making good progress.
 - MiniBooNe is starting its physics run.
 - NuMI is proceeding toward a 2005 start.
- The FY2003 budget is having negative impact that will last for years.
- The FY 2004 budget is even worse for the Fermilab program.